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Abstract We developed the dominance and separability degrees as two new math-
ematical tools measuring the amount of comparabilities and incomparabilities among
pairs of disjoint subposets in a parent poset and we have related them through a theo-
rem. Their mathematical properties when these measures are constrained to be higher
than 0.5 have been studied. We have shown that variations of dominance and sep-
arability degrees from values in the real interval (0.5, 1] permit to “tune” the level
of detail on the comparabilites and incomparabilities among the subsets studied. The
lack of transitivity of dominance and separability degrees is established, along with
the special requirement, needed on the poset, to have a transitivity of these measures.
As a chemical application, the Hasse diagram of Born-Oppenheimer molecular total
energies of the complete set of isoelectronic species with total nuclear charge 10 in
their minimum energy configurations has been studied. We partition this set into 10
subsets, each one containing all the species with the same number of nuclei. By the
calculation of the dominance and separability degrees a relation between the number
of atoms in any ensemble and the Born-Oppenheimer energies is established.
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1 Introduction

Partially ordered sets (posets) are mathematical structures based on a comparison
among the elements of a set [1]. If these elements are defined by their properties, then
a poset is the result of the simultaneous comparison of the elements through their
properties. Comparisons are usual in human activities, examples of their presence are
these kinds of questions: which is the best kind of economic system?, which is the
best university?, which is the best quantum-chemical level of calculation?, which is the
most hazardous substance? In order to reply to these questions it is always necessary
to make comparisons, and a poset is the mathematical structure behind them.

There are several posetic studies in different fields of knowledge [1,2]; in econ-
omy, for instance, Annoni recently ranked and classified a set of European countries
according to their public level of satisfaction regarding different public services [3];
in ecology, Solomon has pointed out the posetic character of the abundance vectors
used to define a community in diversity studies [4]; in thermodynamics and quantum
mechanics it has been shown the relation of the Young diagrams lattice (a poset) with
the mixing character [5–7] and the generation of wave functions satisfying the Pauli
exclusion principle [8]. Particularly in chemistry, instances of posetic studies started
at the end of 1960s with Ruch and his investigations into the algebraic description
of chirality [9,10]; afterwards Randić and some others made important researches on
chemical structure and its posetic description [11–15]. Another relevant and nowa-
days quite explored aspect of posets in chemistry was initiated by Halfon and Reggiani
in 1986 when they ranked substances in environmental hazard studies [16]; this line
of research has been deeply studied by Brüggemann and coworkers [1,17–29], who
regularly organise workshops about posets in chemistry and environmental sciences.
Some other instances of these mathematical structures in chemistry are found in Refs.
[1,28–36]. A more general statement on posets has been set up by Klein and Babić
[35,36], who have pointed out that posets may be deeply related to experimental sci-
ences through the measuring process. According to these authors, ambiguities resulting
from measurements might be explained as the result of measuring elements, which
in reality must be considered as incomparable. Hence, the measuring method may
force the incomparabilities to be comparable and, because of the different possibil-
ities to do this [37,38], the outcomes may be different, therefore “ambiguous”, in a
systematically controlled way.

Once a poset is detected or constructed on a given set, its analysis permits to draw
conclusions on the order relations among the elements considered, for instance maxi-
mal and minimal elements or order intervals, ideals or filters [39]. The study of these
posetic features and their properties are an important and active research field of math-
ematics, mainly carried out in combinatorics. However, to our knowledge, there is little
information on the study of posetic properties of subsets of elements belonging to a
poset. That is to ask, if the original set is partitioned into different subsets, what is the
behaviour of the order relations among these subsets? In a chemical framework this
question can be exemplified as: given a poset of organic molecules, which are the order
relations between alkanes–alkenes, alkanes–alkynes, alkynes–amines and so on?
In this paper we deal with that question and we develop two measures, one related to
the comparability and another one with the incomparability between a pair of subsets;
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the first measure is called the dominance degree and the second one the separability
degree. We also describe their mathematical properties and their relation through a
novel theorem. Finally, these measurements are applied to different subposets of a
poset of isoelectronic chemical species with equal total nuclear charge.

2 Methodology

For the sake of clarity we introduce some terms useful for the understanding of the
paper:

Definition 1 An ordered pair (P,R) is called a structure if R is a relation on the
non-empty set P which is called a ground set and is here considered finite.

Definition 2 A binary relation ≤ on P is called a partial order if:

1. x ∈ P ⇒ x ≤ x,
2. x, y ∈ P, x ≤ y and y ≤ x ⇒ x = y,
3. x, y, z ∈ P, x ≤ y and y ≤ z ⇒ x ≤ z.

Then ≤ is respectively reflexive, antisymmetric and transitive on P . A ground set
equipped with a partial order is called a poset (partially ordered set) and it is denoted
as (P, ≤).

Definition 3 Let P ′ be a subset of P , with the inherited order relation ≤, then (P ′,≤)

is a subposet of (P,≤).

In some cases the fact of having x ≤ y and y ≤ x does not necessarily imply x = y.
In those situations it is said that x and y are related by an equivalence relation different
than equality, for instance a similarity relation [40] in which case ≤ is called a quasi
order [19]. This may occur when the elements of P are described by means of their
features. In the case with a quasi-order one may define an equivalence relation ≈ such
that the equivalence class of x ∈ P is {y : x ≤ y and y ≤ x}. Hence, if one wants
to order the elements of P according to ≤, it is possible to select a representative
element of each equivalence class to perform the ordering, instead of considering all
the elements in P , including equivalent ones. In that case the relation ≤ is not applied
to the complete set P but to a set P ′′ of representative elements of each equivalence
class. In order to avoid cumbersome notation, we keep calling P the reduced set P ′′
of representatives.

Definition 4 Two elements x, y ∈ P are said to be comparable if either x ≤ y or
y ≤ x. We say that x surpasses y if y ≤ x.

Definition 5 Given two elements x, y ∈ P , we say that y is covered by x, denoted
y ≤: x, if y ≤ x and there is no z ∈ P for which y < z and z < x. If y ≤: x, it is said
that x covers y.

The existence of (P, ≤) does not guarantee the comparability between every pair
x, y ∈ P . For those “incomparable” elements a new relation is defined.
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Definition 6 For all x, y ∈ P, x and y are incomparable (x||y) iff not x ≤ y and
not y ≤ x. The incomparability relation || is a binary relation on P fulfilling these
properties:

1. x ∈ P ⇒ not x||x,
2. x, y ∈ P, x||y ⇒ y||x.

Then || is an irreflexive and symmetric relation on P .

Definition 7 Let G≤ = (P,E≤) the comparability graph of (P,≤), where E≤ is the
set of edges containing the comparable pairs in P .

Definition 8 Let G≤: = (P,E≤:) the cover graph of (P,≤), where E≤: is the set of
edges containing the cover pairs in P .

G≤:, as well as G≤, is an undirected graph which offers more information about com-
parabilities and incomparabilities if it is oriented taking advantage of the antisymmetry
of ≤ [2].

Definition 9 Let H = (P, d(E≤:)) a directed graph of (P,≤) where d(E≤:) is the
set of directed edges containing the cover pairs in P.H is called the Hasse diagram
of (P,≤) if it is drawn in the Euclidean plane whose horizontal/vertical coordinate
system requires that the vertical coordinate of x ∈ P be larger than the one of y ∈ P

if y ≤: x.

Definition 10 Let G|| = (P,E||) the incomparability graph of (P,≤), where E≤: is
the set of edges containing the incomparable pairs in P .

2.1 Order relations among subsets of a poset

There are two ways for studying the order relations among subsets of a poset (P,≤).
The first one clusters the elements of P and defines pseudo-objects as centres of the
clusters and finally analyses the resulting partial order on the set of pseudo-objects
[20]. The second possibility considers all the order relations between members of dif-
ferent subsets of P , which can arise from external knowledge. For example, chemicals
may be ordered due to a set of properties. There may still be information, which is
not used for ordering the chemicals but which can be used to define subsets within
the partially ordered set. This methodology and its properties are studied in this paper
by defining two new structural parameters of (P,≤); one dealing with the ≤-relation
between subsets, called dominance1 degree, and another one studying the ||-relation,
called separability degree. Since these two measures depend on the number of com-
parabilities and incomparabilities among the elements of any two subsets of a Hasse
diagram, we introduce an indicator function useful for counting them.

1 The concept of dominance developed in this paper is not directly related to the one of dominating set,
which is as follows [41]: A dominating set is a set of vertices D ⊆ V in a graph G = (V ,E) having the
property that every vertex v ∈ V − D is adjacent to at least one vertex in D.
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Definition 11 Let (P,≤) be a poset with Pi and Pj ⊂ P such that Pi ∩Pj = ∅. Then

for all x ∈ Pi, y ∈ Pj it is defined the indicator function L
(i,j)
xy as follows:

L
(i,j)
xy =

⎧
⎨

⎩

1 if y ≤ x

−1 if x ≤ y

0 if x||y
(1)

Whenever it holds a comparability between x and y, L
(i,j)
xy assigns a value of 1 or −1,

being 1 when x surpasses y and −1 when y surpasses x;L
(i,j)
xy yields a value of zero

when the pair is incomparable (recall that equivalences are excluded). This kind of
indicator function is used in observational studies [42] and it is further described by
Rosenbaum [42,43].

In order to have an account of the number of comparabilities (y ≤ x and x ≤ y)

and incomparabilities (x||y) in P , the statistics Tj≤i , Ti≤j and Ti||j are created.

Definition 12 Let Pi and Pj be two disjoint subsets with x ∈ Pi, y ∈ Pj and respec-
tive cardinalities ni and nj . The statistics Tj≤i , Ti≤j and Ti||j among all possible ni ·nj

relations are defined as:

Tj≤i is a count of all L
(i,j)
xy = 1,

Ti≤j is a count of all L
(i,j)
xy = −1,

Ti||j is a count of all L
(i,j)
xy = 0. (2)

In the following we introduce the dominance and separability degrees.

Definition 13 Let (P,≤) be a poset with Pi, Pj ⊂ P such that Pi ∩ Pj = ∅ and
ni = |Pi |, nj = |Pj |. Then for all x ∈ Pi and y ∈ Pj , the dominance degree of Pi

over Pj is given by

Dom(Pi, Pj ) = Tj≤i

ni · nj

(3)

Hence, Dom(Pi, Pj ) counts the number of ordered pairs where an element of Pi sur-
passes an element of Pj and divides it by all the possible relations between Pi and
Pj . Therefore, Dom yields a real value ranging from 0 to 1; Dom(Pi, Pj ) = 1 means
that all the elements in Pi surpass all those in Pj . In contrast, if Dom(Pi, Pj ) = 0, it
means that no element of Pi surpasses an element of Pj . Note that, because of the anti-
symmetry of ≤ (Definition 2), Dom(Pi, Pj ) is not necessarily equal to Dom(Pj , Pi)

and the equality only occurs when the number of pairs x ≤ y is equal to the number
of pairs y ≤ x (see Corollary 1).

The relations defined on P are of two types: comparabilities (≤) and incompa-
rabilities (||). Since Dom(Pi, Pj ) represents the fraction of relations of Pi over Pj

such that y ≤ x with x ∈ Pi and y ∈ Pj , it is possible that the rest of the relations
correspond to either comparabilities where the elements of Pj surpass those of Pi , or
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incomparabilities among them. Hence, given a value of Dom(Pi, Pj ) it is natural to
ask for Dom(Pj , Pi) and also for the proportion of incomparabilities. These incom-
parabilities may be gathered in a mathematical expression similar to and, as we show
later in Theorem 1, related to dominance degree.

Definition 14 Given a poset (P,≤) with Pi, Pj ⊂ P such that Pi ∩ Pj = ∅ and
ni = |Pi |, nj = |Pj |, then for all x ∈ Pi, y ∈ Pj , the separability degree between Pi

and Pj is given by

Sep(Pi, Pj ) = Ti||j
ni · nj

(4)

Sep(Pi, Pj ) is the result of the division of the number of incomparabilities between
the elements of Pi and Pj and the number of order relations between Pi and Pj .
Note that Sep(Pi, Pj ) = Sep(Pj , Pi) because of the symmetry of || (Definition 6).
Separability degree takes values in the real interval [0, 1]; Sep(Pi, Pj ) = 1 means
that all the possible relations between Pi and Pj are incomparabilities; in contrast,
a value of Sep(Pi, Pj ) = 0 means that there are no incomparabilities between
Pi and Pj , thereby all their relations are comparabilities and they are counted in
Dom(Pi, Pj ) and Dom(Pj , Pi). Hence, there is a mathematical relation between
Dom(Pi, Pj ),Dom(Pj , Pi) and Sep(Pi, Pj ), which is set up in Theorem 1. Before
introducing this theorem and its consequences, we show an example of calculation of
dominance and separability degrees.

Example 1 Let P = {a, b, c, d, e, f, g, h}, P1 = {a, b, c, d}, P2 = {e, f, g, h} and
the Hasse diagram depicted in Fig. 1. In this case Dom(P1, P2) = 8/16 = 0.5,
Dom(P2, P1) = 4/16 = 0.25 and Sep(P1, P2) = 4/16 = 0.25.

Note that the only requirement for calculating dominance and separability degrees is
that Pi and Pj be disjoint subsets. This implies that their internal relations, ≤ and ||,
are not necessary for building up Pi or Pj . In fact, they might be antichains, chains or
mixtures of them and this fact does not address the membership to Pi or Pj .

Fig. 1 A Hasse diagram on the
set P = {a, b, c, d, e, f, g, h};
two “boxed” subsets
P1 = {a, b, c, d} and
P2 = {e, f, g, h} with
n1 = n2 = 4; and their
respective dominance and
separability degrees

Dom(P1, P2) = 0.5

Dom(P1, P2) = 0.25
sep(P1, P2) = 0.25

P1

P2

a

b c

d

e

f

g

h
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Theorem 1 Let (P,≤) be a poset with Pi, Pj ⊂ P such that Pi ∩ Pj = ∅. The
dominance (Dom) (Definition 13) and separability (Sep) (Definition 14) degrees for
Pi and Pj satisfy Dom(Pi, Pj ) + Dom(Pj , Pi) + Sep(Pi, Pj ) = 1.

Proof Dom(Pi, Pj ),Dom(Pj , Pi) and Sep(Pi, Pj ) are defined on Pi, Pj ⊂ P ,
where ni = |Pi | and nj = |Pj |. There are two relations defined on P , namely ≤
(Definition 2) and || (Definition 6), which are in turn defined on the subposets (Pi,≤)

and (Pj ,≤). The relation ≤ can be split into the relations ≤j i and ≤ij , where ≤j i=
{(x, y) : x ∈ Pi, y ∈ Pj and y ≤ x} and ≤ij= {(x, y) : x ∈ Pi, y ∈ Pj and x ≤ y}.
Then, the set {≤j i ,≤ij } is a partition of ≤ because ≤=≤j i ∪ ≤ij and ≤j i ∩ ≤ij= ∅.
From this, and from Definition 6, follows that ≤ ∩ || = ∅ and R =≤ ∪ ||, where
R = {(x, y) : x ∈ Pi, y ∈ Pj and either y ≤ x or x ≤ y or x||y}, which is the set
of ordered pairs (x, y) ∈ Pi × Pj fulfilling the relations ≤ and ||. Then, {≤j i ,≤ij , ||}
is a partition of R because ≤j i ∩ ≤ij ∩ || = ∅ and R =≤j i ∪ ≤ij ∪ ||. Since
|R| = ni · nj , then | ≤j i | + | ≤ij | + | || | = ni · nj , and, according to Definition 11,
this is equivalent to Tj≤i + Ti≤j + Ti||j = ni · nj . Thus, from Definitions 13 and 14
it follows that Dom(Pi, Pj ) + Dom(Pj , Pi) + Sep(Pi, Pj ) = 1 ��
The dominance degree, Dom(Pi, Pj ), is a measurement of the extent of comparabil-
ity between any two disjoint subposets of P . In observational studies [42–44], whose
goal is to measure the effect of a cause, for instance the effect of a medical treat-
ment on patients, a set P of observations (patients) is divided into two subsets Pi

(control) and Pj (treatment). When the observations are described by more than one
outcome, then P may become a poset and the coherence of the cause-effect hypothesis
is measured by the degree of dominance of one of the two considered subsets in the
poset. This measurement is carried out by a statistic operating on the set of relations
between the two compared subsets and it considers simultaneously comparabilities
and incomparabilities. The statistic used in these studies [44] is:

ζ̂ C =

n1∑

l=1

n2∑

m=1
L

(1,2)
lm

n1 · n2
, with L

(1,2)
lm =

⎧
⎨

⎩

1 if ym ≤ xl

−1 if xl ≤ ym

0 if xl || ym

⎫
⎬

⎭

{
l ∈ I1, m ∈ I2
Ij ≡ index set for Pj

(5)

Since ζ̂C operates over all possible values of L
(1,2)
lm , it does not distinguish between

L
(1,2)
lm = 1,−1 or 0, thereby it does not differentiate between Dom(Pi, Pj ) =

Dom(Pj , Pi), Sep(Pi, Pj ) = 1; and Dom(Pi, Pj ) = Dom(Pj , Pi), Sep(Pi, Pj ) =
0; yielding a value of zero for both cases. It can be also noted that ζ̂C = Dom(Pi, Pj )−
Dom(Pj , Pi). Then, the advantage of studying individually Dom(Pi, Pj ),Dom(Pj ,

Pi) and Sep(Pi, Pj ) makes it possible to go into the details of the comparability and
incomparability relations between Pi and Pj . Note that ζ̂C is equivalent to the statistic
suggested by Rosenbaum [42,43].

In a work on observational studies developed by Gefeller and Pralle [44], it is
stated that, what here it is defined as, Dom(Pi, Pj ) and Dom(Pj , Pi) must fulfil
Dom(Pi, Pj ) + Dom(Pj , Pi) ≤ 1. This inequality becomes an equality by adding
the term of separability between Pi and Pj , as in the statement of Theorem 1.
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Corollary 1 Dom(Pi, Pj ) = Dom(Pj , Pi) iff Tj≤i = Ti≤j .

This corollary states that Pi dominates Pj and Pj dominates Pi to the same extent
only if the number of pairs where y ≤ x is equal to the number of pairs where x ≤ y,
having x ∈ Pi and y ∈ Pj .

Since Dom(Pi, Pj ) depends on the number of comparabilities between Pi and Pj ,
where the elements of Pi surpass the ones of Pj , then Dom(Pi, Pj ) can be related to
a matrix of comparabilities of this kind.

Definition 15 Given a Hasse diagram of (P,≤), Pi and Pj ⊂ P holding Pi ∩Pj = ∅;

then for all x ∈ Pi, y ∈ Pj the indicator function M
(i,j)
xy is defined as follows:

M
(i,j)
xy =

{
1 if y ≤ x

0 otherwise
(6)

Definition 16 Let M(i,j) =
[
M

(i,j)
xy

]

ni×nj

the matrix representing the M
(i,j)
xy -values

of (x, y) ∈ Pi × Pj , where |Pi | = ni and |Pj | = nj .

This matrix can be regarded as an adjacency matrix describing the ≤-relations among
the elements in Pi and those in Pj . Note that M(i,j) is not a symmetric matrix because
of the antisymmetry of ≤ (Definition 2). Since the statistic Tj≤i (Definition 12) can
be derived from this matrix, then Dom(Pi, Pj ) (Definition 13) can also be related to
M(i,j).

Each couple of disjoint subsets in P can be described by an M matrix and it is
possible to study the relation between subsets by the multiplication of these matrices.

Before describing the meaning of the standard matrix product of M matrices, we
define the collection of subsets of P and the ≤-paths.

Definition 17 Let P be a non-empty set andP a collection of subsets of P .P partitions
P iff:

1. P = ∪Pi∈PPi ,
2. If P1 and P2 ∈ P, then P1 ∩ P2 = ∅.

Definition 18 Let Pi, Pk, . . ., Pl, Pj ∈ P and r ∈ Pi, s ∈ Pk, . . ., t ∈ Pl, u ∈ Pj .
Any sequence of comparabilities r ≤ s ≤ · · · ≤ t ≤ u is called a ≤-path.

Proposition 1 Let (P,≤) be a poset; S ⊆ P;Pi ∈ S, |Pi | = ni; and G≤:(S) the
cover graph of (S,≤). Let M(i,j) be the associated matrix to any pair Pi, Pj ∈ S.
Let be the standard matrix product of an arbitrary number of M matrices yielding a

matrix C, defined as follows: C(i,j) = M(i,k) · . . . ·M(l,j) =
[
C

(i,j)
ru

]

ni×nj

, with i, j

indicating Pi, Pj ∈ S and r ∈ Pi, u ∈ Pj .

If these conditions hold, then each C
(i,j)
ru represents the number of ≤-paths r ≤

s ≤ · · · ≤ t ≤ u between r ∈ Pi and u ∈ Pj in G≤:(S) such that these ≤-paths pass
through at least one element of each subset Pi, Pk, . . ., Pl, Pj ∈ S considered in the
matrix product.
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Proof We shall prove that given a standard matrix product of M matrices, the ele-
ments of the final matrix C indicate the number of ≤-paths passing through at least
one element of each subset in the matrix product.

Let us start assuming, without loss of generality, P = {a, b, c, d, e, f, g, h} andP =
{P1, P2, P3, P4} with P1 = {a, b}, P2 = {c, d}, P3 = {e, f } and P4 = {g, h}. Let us
consider S = P and the following arbitrary M matrices.

c d

M(1,2) = a

b

[
M

(1,2)
ac M

(1,2)
ad

M
(1,2)
bc M

(1,2)
bd

]
e f

M(2,3) = c

d

⎡

⎣
M

(2,3)
ce M

(2,3)
cf

M
(2,3)
de M

(2,3)
df

⎤

⎦

g h

M(3,4) = e

f

⎡

⎣
M

(3,4)
eg M

(3,4)
eh

M
(3,4)
fg M

(3,4)
f h

⎤

⎦

and their product C(1,4) = M(1,2) · M(2,3) · M(3,4)

g h

C(1,4) = a

b

⎡

⎣
C

(1,4)
ag C

(1,4)
ah

C
(1,4)
bg C

(1,4)
bh

⎤

⎦ with

C(1,4)
ag = M(1,2)

ac M(2,3)
ce M(3,4)

eg + M
(1,2)
ad M

(2,3)
de M(3,4)

eg + M(1,2)
ac M

(2,3)
cf M

(3,4)
fg

+M
(1,2)
ad M

(2,3)
df M

(3,4)
fg

C
(1,4)
ah = M(1,2)

ac M(2,3)
ce M

(3,4)
eh + M

(1,2)
ad M

(2,3)
de M

(3,4)
eh + M(1,2)

ac M
(2,3)
cf M

(3,4)
f h

+M
(1,2)
ad M

(2,3)
df M

(3,4)
f h

C
(1,4)
bg = M

(1,2)
bc M(2,3)

ce M(3,4)
eg + M

(1,2)
bd M

(2,3)
de M(3,4)

eg + M
(1,2)
bc M

(2,3)
cf M

(3,4)
fg

+M
(1,2)
bd M

(2,3)
df M

(3,4)
fg

C
(1,4)
bh = M

(1,2)
bc M(2,3)

ce M
(3,4)
eh + M

(1,2)
bd M

(2,3)
de M

(3,4)
eh + M

(1,2)
bc M

(2,3)
cf M

(3,4)
f h

+M
(1,2)
bd M

(2,3)
df M

(3,4)
f h

Now, each element C
(1,4)
ag , C

(1,4)
ah , C

(1,4)
bg , C

(1,4)
bh of the matrix C(1,4) is of the form

∑
M

(1,2)
rs M

(2,3)
st M

(3,4)
tu , with r ∈ P1, s ∈ P2, t ∈ P3 and u ∈ P4.

According to Definition 15, for any x ∈ Pi and y ∈ Pj with Pi ∩ Pj = ∅,M
(i,j)
xy is

equal to 1 if y ≤ x and 0 otherwise, therefore each term M
(1,2)
rs M

(2,3)
st M

(3,4)
tu in

∑
M

(1,2)
rs M

(2,3)
st M

(3,4)
tu is either equal to 1 or to 0. It is 1 if all Mxy have the value

1; that is, if r ≥ s, s ≥ t and t ≥ u. It is 0 if at least one Mxy = 0; that is,
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if at least one of these incomparabilities r||s, s||t or t ||u holds. Hence, each term
M

(1,2)
rs M

(2,3)
st M

(3,4)
tu in

∑
M

(1,2)
rs M

(2,3)
st M

(3,4)
tu indicates if it is possible to find a ≤-path

of the form r ≥ s ≥ t ≥ u through the particular elements r, s, t and u. Consequently,
∑

M
(1,2)
rs M

(2,3)
st M

(3,4)
tu indicates the number of such paths between r ∈ P1 and u ∈ P4.

Now, we have to prove that these paths pass through at least one element of the
subsets Pi considered in the matrix product.

Because each M
(i,j)
xy always considers only the element x of Pi and only the ele-

ment y of Pj , the finding of M
(1,2)
rs M

(2,3)
st M

(3,4)
tu = 1 guarantees the existence of a

path r ≥ s ≥ t ≥ u passing exclusively through the elements r, s, t and u in the
order given by the product. Hence, each element of the matrix C, given by C

(1,4)
ru =

∑
M

(1,2)
rs M

(2,3)
st M

(3,4)
tu , accounts for all the theoretical paths between r and u passing

through each single element of Ps and Pt . Thereby, if C
(1,4)
ru = 0, then none of the

theoretical paths is realised. In contrast, if C
(1,4)
ru ≥ 1, the inequality is met if more

than one of the theoretical paths between r and u passing through single elements of
Ps and Pt is realised. C(1,4)

ru = 1 if at least one of the theoretical paths including single
elements of Ps and Pt exists.

In conclusion, the ≤-paths pass through at least one element of the subsets Ps and
Pt , which are considered in the matrix product.

Because of the properties of the standard matrix product regarding the generality
of the elements of a C matrix obtained by the finite product of arbitrary M matrices,
it is possible to extend this result to any finite set P partitioned into different disjoint
subsets gathered in P with a subset S ⊆ P; S = {P1, P2, P3, . . ., Pn−1, Pn} for which
arbitrary matrices are defined in such a way that C(i,j) = M(i,k) · . . . · M(l,j), for any
Pi, Pk, . . ., Pl, Pj ∈ S. The elements of C(i,j) are of the form

∑
Mrs · · · Mtu with

r ∈ Pi, s ∈ Pk, t ∈ Pl and u ∈ Pj . Therefore, each element of C(i,j) indicates the
number of ≤-paths passing through at least one element of each subset in the matrix
product. ��
Example 2 Let be the Hasse diagram depicted in Fig. 1 and the new subsets P1 =
{a, e}, P2 = {c, d} and P3 = {g}. In this case there are 3(3−1) = 6 possible matrices
M:

c d

M(1,2) = a

e

[
1 1
1 1

] g

M(1,3) = a

e

[
1
1

] a e

M(2,1) = c

d

[
0 0
0 0

]

g

M(2,3) = c

d

[
1
1

] a e

M(3,1) = g
[

0 0
] c d

M(3,2) = g
[

0 0
]

If we calculate M(1,2) · M(2,3), for instance, the matrix C(1,3) obtained is:

g

C(1,3) = a

e

[
2
2

]
.
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Fig. 2 A Hasse diagram on the
set P = {a, b, c, d, e, f, g, h,

i, j}; four “boxed” subsets
P1 = {a, b}, P2 = {c, d},
P3 = {e}, P4 = {f, g, h} and
P5 = {i, j}

a b

cd

e

f

g h

ij

P

P3

P1

P4

P5

P2

The entries of C(1,3) indicate that there are two ≤-paths (C
(1,3)
ag = 2) of the form

g ≤ x ≤ a with a ∈ P1, x ∈ P2 and g ∈ P3; these two ≤-paths are g ≤ c ≤ a and
g ≤ d ≤ a. For C

(1,3)
eg = 2 the corresponding ≤-paths are g ≤ c ≤ e and g ≤ d ≤ e.

The paths can be easily visualised if the comparability graph of the poset is drawn.

If we consider another product, for example M(1,3) · M(3,2), then C(1,2) = [0]2×2
is obtained, which means that there are no possible ≤-paths of the form x ≤ g ≤ a,
with x ∈ P2, g ∈ P3 and a ∈ P1, between an element of P1 and an element of P2
passing through an element of P3.

Example 3 Let P1 = {a, b}, P2 = {c, d}, P3 = {e}, P4 = {f, g, h}, P5 = {i, j} and
the Hasse diagram shown in Fig. 2. In this case there are 20 M matrices; we show 4
of them and their associated C(1,5) matrix.

c d

M(1,2) = a

b

[
1 1
0 0

] e

M(2,3) = c

d

[
0
1

] f g h

M(3,4) = e
[

1 1 1
]

i j

M(4,5) =
f

g

h

⎡

⎣
1 1
1 1
1 0

⎤

⎦

i j

C(1,5) = M(1,2) · M(2,3) · M(3,4) · M(4,5) = a

b

[
3 2
0 0

]

Here, C
(1,5)
ai = 3 which means that there are three ≤-paths of the form i ≤ z ≤ y ≤

x ≤ a between a and i passing through at least one element x of P2, one y of P3 and
one z of P4; they are i ≤ f ≤ e ≤ d ≤ a, i ≤ g ≤ e ≤ d ≤ a and i ≤ h ≤ e ≤ d ≤ a.
There are, |P2| · |P3| · |P4| = 6 theoretical paths between a and i passing through at
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least one element x of P2, one y of P3 and one z of P4, the remaining three paths are
i ≤ f ≤ e || c ≤ a, i ≤ g ≤ e || c ≤ a and i ≤ h ≤ e || c ≤ a, which are not possible
because of the incomparability c || e.

2.2 Properties of dominance and separability degrees

Once the dominance and separability degrees are calculated, a critical value of dom-
inance or separability may be selected for stating that one subset dominates or is
separable from another one. Since dominance degree comes from the total number of
possible comparabilities among the elements of the compared subsets, then it is said
that the subset Pi dominates Pj , when more than half of the possible relations among
the elements of Pi and Pj are comparabilities y ≤ x with x ∈ Pi and y ∈ Pj . Thus,
we are interested in values of Dom(Pi, Pj ) > 0.5, which, according to Theorem 1,
guarantees that Dom(Pj , Pi)+Sep(Pi, Pj ) < 0.5; for that reason if Dom(Pi, Pj ) >

0.5 then, Pj cannot dominate Pi . The limiting value for Dom(Pi, Pj ) could also be
shifted to high scores, for example 0.9, in which case we look for subsets Pi and Pj for
which 90% of the possible relations among elements of Pi and Pj are comparabilities
where y ≤ x with x ∈ Pi and y ∈ Pj .

Definition 19 We say Pi ε-dominatesPj iff Dom(Pi, Pj ) > ε with ε ∈ [0.5, 1). In
that case it is written Pj ≺ε Pi .

It is important to note the meaning of Dom(Pi, Pj ) > ε with ε ∈ [0.5, 1). It implies
to have dominance degree values greater than an ε in the interval [0.5, 1), which means
to have dominance degree values in the interval (0.5, 1].

In order to explore the properties of ≺ε, we display six general properties of binary
relations.

Definition 20 Let X �= ∅ and R a binary relation on X. Then six possible properties
of R are:

1. x ∈ X ⇒ xRx (reflexive),
2. x ∈ X ⇒ not xRx (irreflexive),
3. x, y ∈ X, xRy ⇒ yRx (symmetric),
4. x, y ∈ X, xRy ⇒ not yRx (asymmetric),
5. x, y ∈ X, xRy and yRx ⇒ x = y (antisymmetric),
6. x, y, z ∈ X, xRy and yRz ⇒ xRz (transitive).

Proposition 2 From the properties shown in Definition 20, ≺ε is only irreflexive and
asymmetric on P.

Proof 1, 2. ≺ε is irreflexive and not reflexive because it is a binary relation defined
on P, whose elements are disjoint subsets (Definition 17).

3. If ≺ε is to be a symmetric relation, then Pj ≺ε Pi ⇒ Pi ≺ε Pj , with Pi, Pj ∈
P. If Pj ≺ε Pi , then, from Definition 13, Tj≤i > ε(ni · nj ). According to Theorem 1,
the maximum number of x ≤ y relations, for all x ∈ Pi and y ∈ Pj , is given by
Tj≤i + Ti≤j = ni · nj (Ti||j = 0). Knowing that Tj≤i > ε(ni · nj ) then Ti≤j <

ni · nj (1 − ε). Hence, Ti≤j not > ε(ni · nj ), therefore Pi not ≺ε Pj .
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Fig. 3 A Hasse diagram
showing the lack of transitivity
of ≺ε

Dom(P3, P2) = 0.67
Dom(P2, P1) = 0.67
Dom(P3, P1) = 0.5

P3

P2

P1

P2 0.5 P3

P1 0.5 P2

not P1 0.5 P3

ba

c d e

ff gg

4. If ≺ε is asymmetric then Pj ≺ε Pi ⇒ not Pi ≺ε Pj as was shown before (3).

5. In order to prove that ≺ε is not antisymmetric, let Pi, Pj ∈ P and ni = |Pi |, nj =
|Pj |. The two initial conditions of the antisymmetry are Pj ≺ε Pi and Pi ≺ε Pj . It is
enough to prove that they cannot be given simultaneously in P. If Pj ≺ε Pi then, from
Theorem 1, Tj≤i > (Ti≤j + Ti||j ); if Pi ≺ε Pj then Ti≤j > (Tj≤i + Ti||j ); thereby
Ti||j < Tj≤i − Ti≤j < −Ti||j , which is a contradiction and Pj ≺ε Pi, Pi ≺ε Pj

cannot hold simultaneously.

6. An example showing the lack of transitivity of ≺ε is illustrated in Fig. 3.
Pj ≺ε Pi means Dom(Pi, Pj ) > ε with ε ∈ [0.5, 1). In this example (Fig. 3),
Dom(P3, P2),Dom(P2, P1) > 0.5, then P2 ≺0.5 P3 and P1 ≺0.5 P2 but
Dom(P3, P1) = 0.5, therefore not P1 ≺0.5 P3. ��

If we consider again the Hasse diagram of Fig. 3 and we add to it the compara-
bility g ≤ d, it keeps holding P2 ≺0.5 P3 and P1 ≺0.5 P2 but now P1 ≺0.5 P3, in
fact Dom(P3, P1) = 1. Why does it occur? Because g ≤ d permits the additional
comparabilities g ≤ a and g ≤ b. On the other hand P2 ≺0.5 P3 and P1 ≺0.5 P2 are
maintained together with P1 ≺0.5 P3 because more than half of the relations among
elements of P3 and P1 correspond to x ≤ y ≤ z, where x ∈ P1, y ∈ P2 and z ∈ P3.
It is, more than half of the pairs x, z are related by a ≤-path x ≤ y ≤ z passing
through some element of P2. Then, the existence of these paths is determinant for the
≤-relation of two subsets having a third one in between.

The above statement makes one think that ≺ε may become a transitive relation if
it is endowed with ≤-paths. That is correct but then the transitivity is not a property
of ≺ε, as we show in Proposition 2, but of the structure (≺ε,≤-paths).

In Fig. 4 we show five Hasse diagrams, three subposets and their dominance rela-
tions for ε = 0.5; additionally we show the presence or absence of ≤-paths between
those subposets. We write no ≤-paths (Fig. 4) if the number of ≤-paths x ≤ y ≤ z

between Pi and Pk is less than or equal than half of ni · nk .
From the Hasse diagrams shown in Fig. 4 and from the discussion about Fig. 3,

it can be concluded that always the presence of more than (ni · nk)/2 ≤-paths x ≤
y ≤ z guarantees that Pi ≺0.5 Pk . However, those ≤-paths alone are not a guaran-
tee of Pi ≺0.5 Pj and Pj ≺0.5 Pk . Then, in order to have an implication similar to
Pi ≺0.5 Pj , Pj ≺0.5 Pk ⇒ Pi ≺0.5 Pk , it is necessary to meet Pi ≺0.5 Pj , Pj ≺0.5 Pk
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Pk

Pj

Pj 0.5 Pk

not Pi 0.5 Pj

not Pi 0.5 Pk

Pi

no -paths

Pk

Pj

not Pj 0.5 Pk

Pi 0.5 Pj

not Pi 0.5 Pk

Pi

no -paths

Pk

Pj

Pj Pk

not Pi 0.5 Pj

Pi 0.5 Pk

Pi

-paths

Pk

Pj

not Pj Pk

Pi Pj

Pi Pk

Pi

-paths

Pk

j 0.5 Pk

i

-paths

Pk Pk

Pj

not Pj Pk

Pi 0.5 Pj

Pi 0.5 Pk

Pi

Pk

Pj

not Pj 0.5 Pk

Pk

Pj

not Pj 0.5 Pk

not Pi 0.5 Pj

Pi 0.5 Pk

Pi

no -pathsno 

Fig. 4 Four Hasse diagrams, ≺0.5 relations for its subposets and the presence/absence of ≤-paths among
them

and to guarantee the existence of more than (ni ·nk)/2 ≤-paths of the form x ≤ y ≤ z

with x ∈ Pi, y ∈ Pj and z ∈ Pk .

Theorem 2 Let Pi, Pj , Pk ∈ P such that there are more than ε(ni · nk) ≤-paths of
the sort x ≤ y ≤ z, with x ∈ Pi, y ∈ Pj and z ∈ Pk , and Pi ≺ε Pj , Pj ≺ε Pk . If this
is satisfied, then Pi ≺ε Pk .

Proof Pi ≺ε Pj ensures that there are more than ε(ni · nj ) relations x ≤ y with
x ∈ Pi, y ∈ Pj . In the same way Pj ≺ε Pk guarantees the existence of more than
ε(nj · nk) relations y ≤ z with z ∈ Pk . Since ε ∈ [0.5, 1), then both Pi ≺ε Pj and
Pj ≺ε Pk ensure the existence of at least one ≤-path x ≤ y ≤ z. If there are more
than ε(ni · nk) ≤-paths x ≤ y ≤ z, then Ti≤k > ε(ni · nk), thereby Dom(Pk, Pi) > ε

and Pi ≺ε Pk . It is, the number of ≤-paths required to state Pi ≺ε Pk depend on ni

and nk but not on nj . Because of this, from the number of these ≤-paths cannot be
inferred if Tj≤k > ε(nj · nk) neither if Ti≤j > ε(ni · nj ); or in other words whether
Pj ≺ε Pk or not. The inclusion of Pj ≺ε Pk and Pi ≺ε Pj as additional conditions
of this theorem then are a guarantee that Pi ≺ε Pk ��
Definition 21 Two sets Pi, Pj ∈ P are said to be ε-dominable iff either Pi ≺ε Pj or
Pj ≺ε Pi . We say that Pi ε-dominatesPj if Pj ≺ε Pi .

Definition 22 Given two sets Pi, Pj ∈P, we say that Pi is covered by ε-dominance

by Pj , denoted Pi ≺ε: Pj , if Pi ≺ε Pj and there is no Pk ∈ P for which Pi ≺ε Pk

and Pk ≺ε Pj . If Pi ≺ε: Pj , it is said that Pj covers by ε-dominance Pi .
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Definition 23 Given Pi, Pj ∈ P, it is said that Pi is δ-separated from Pj or Pj is
δ-separated from Pi iff Sep(Pi, Pj ) > δ with δ ∈ [0.5, 1). In that case it is written
Pi ||δ Pj and we say that Pi and Pj are δ-separable.

Proposition 3 From the properties shown in Definition 20, ||δ is irreflexive and sym-
metric on P.

Proof 1, 2. The relation ||δ is irreflexive because the elements of P are mutually
disjoint subsets; for the same reason it is not reflexive.

3, 4. ||δ is symmetric by definition since Sep(Pi, Pj ) = Sep(Pj , Pi) (Defini-
tion 13); hence it is not asymmetric.

5. Although Pi ||δ Pj and Pj ||δ Pi can always coexist, it does not imply that
Pi = Pj because Pi ∩ Pj = ∅, then ||δ is not antisymmetric.

6. In order to show the no transitivity of ||δ , let us assume that the poset in Fig. 3 is
an incomparability graph (Definition 10), then each link in it is a ||δ relation where it
holds P1 ||δ P2, P2 ||δ P3 but not P1||δP3. Therefore ||δ is not a transitive relation on
P. ��

Then ||δ is defined as follows:

Definition 24 The δ-separability relation ||δ is a binary relation on P fulfilling these
properties:

1. Pi ∈ P ⇒ not Pi ||δ Pi ,
2. Pi, Pj ∈ P, Pi ||δ Pj ⇒ Pj ||δ Pi .

Definition 25 Let G≺ε = (P, E≺ε ) the ε-dominance graph, where E≺ε is the set of
edges containing all the ε-dominable pairs in P.

Definition 26 Let G||δ = (P, E||δ ) the δ-separability graph, where E||δ is the set
of edges containing all the δ-separable pairs in P.

Definition 27 Let G≺ε : = (P, E≺ε :) the cover by ε-dominance graph, where E≺ε : is
the set of edges containing all the cover by ε-dominance pairs in P.

In general, because of the lack of transitivity of ≺ε it is not possible to associate a
Hasse diagram to P, but if the comparabilities and incomparabilities among the ele-
ments of P permit the existence of ≤-paths, as described in Theorem 2, then a Hasse
diagram on the elements of P can be drawn.

Definition 28 Let H = (P, d(E≺ε :)) a directed graph of (P,≺ε, C) where d(E≺ε :) is
the set of directed edges containing the cover by ε-dominance pairs in P. H is called
the ε-dominance Hasse diagram of the structure (P,≺ε, C), where C is the collection
of ≤-paths described in Theorem 2, if H is drawn in the Euclidean plane whose hor-
izontal/vertical coordinate system requires that the vertical coordinate of Pi ∈ P be
larger than the one of Pj ∈ P if Pj ≺ε: Pi .
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3 Application to chemical posets

3.1 Ordering molecular total energies of isoelectronic species with equal total
nuclear charge

The molecular total energy E(Z,R) can be considered as a function of the nuclear
geometry R and the nuclear charges Z in such a way that energy relations for different
molecular species can be reached by variations of R and Z. By energy relations Mezey
[45], Villaveces, Daza and Bernal [32,33,46] refer to order relationships between the
total energy of molecular species. However, E(Z,R) is mathematically complicated
and it is usual to restrict the study of such relationships to particular cases of R and
Z, e.g. Z fixed while R changes and R fixed while Z changes, both cases considering
isoelectronic species [45]. The constraint of R fixed and Z variable, together with
the Born-Oppenheimer approximation has led to obtain general expressions show-
ing order relationships between total energies of isoelectronic molecular species [32].
This kind of studies were initiated by Thirring, Narnhofer, Lieb and Simon [47–49] in
the 1970s and further extended by Mezey in the 1980s [45,50–53]. Villaveces, Daza
and Bernal [32,33,46] have generalised these ideas and have developed elegant theo-
rems to order isoelectronic molecular species in their minimum energy configurations.
A brief description of these results is given as follows.

Two isoelectronic species Z(A) and Z(B) with equal total nuclear charge N are
called isoelectronic–isoprotonic species and are represented by nuclear charge vec-
torsZ(A) = (Z

(A)
1 , Z

(A)
2 , . . . , Z

(A)
N ) andZ(B) = (Z

(B)
1 , Z

(B)
2 , . . . , Z

(B)
N ), respectively,

where Z
(k)
i is the i-th component of the vector k, which corresponds to the i-th nucleus

in the species k.
A set S of vectors in “general position” [46] constitutes the vertices of a polyhedron

P(S) in the space of isoelectronic–isoprotonic species. An example of vectors in gen-
eral position is constituted by the atomic vectors (N, 0, 0, . . ., 0), (0, N, 0, . . ., 0), . . .,

(0, 0, 0, . . ., N), which are atomic vectors of nuclear charge N . In general, S =
{Z(1), Z(2), . . ., Z(p)} and the polyhedron is defined as

P(S) =
{
Z : Z =

∑p

k=1
αkZ

(k), Z(k) ∈ S,
∑p

k=1
αk = 1, αk ≥ 0,

k = 1, 2, . . . , p
}

(7)

P(S) contains all the isoelectronic–isoprotonic species that can be generated by linear
combinations of isoelectronic–isoprotonic atomic vectors, if these vectors are selected
as the generating vertices of the polyhedron.

The Born-Oppenheimer, BO, operator that generates the BO molecular total energy
of any isoelectronic–isoprotonic species in the polyhedron can be expressed in terms
of polyhedron vertices when all molecules in such a polyhedron hold the same nuclear
configuration R. This energy is bounded by:

ER(Z) ≥
∑p

k
αkER(Z(k)) + Q (8)

123



J Math Chem (2008) 44:577–602 593

where Q depends on the vertices generating the polyhedron. If Q ≥ 0, it can be
removed from the inequality without altering it. It has been shown [32] that a set of
Z(k)’s yielding Q ≥ 0 is a subset Sa of vertices, in which any two of them can be
obtained by permutations of its components. Additionally, these permutations must
be equal to a product of disjoint transpositions (details are given in Refs [32,33]).

In general, if the minimum energy configurations of two isoelectronic–isoprotonic
species Z and Z(i) are selected, and if Z can be obtained by permuting components
of Z(i), then the following inequality holds [32,33]:

min
R

E(Z) ≥ min
R

E(Z(i)) (9)

Hence, the BO molecular total energy of any two isoelectronic-isoprotonic species
Z(A) and Z(B) in their minimum energy configurations can be ordered and one of
these two order relations may result:

min
R

E(Z(A)) ≥ min
R

E(Z(B)) (10)

min
R

E(Z(B)) ≥ min
R

E(Z(A)) (11)

To check if Eq. 10 holds, the set of permutations of Z(B) is obtained, that is SB =
{Z(B)1, Z(B)2, . . ., Z(B)p}. If Z(A) belongs to the polyhedron generated by SB , then
Eq. 10 is satisfied. In particular, this implies to solve the following set of linear equa-
tions:

Z
(A)
1 = ∑p

i αiZ
(B)i
1

Z
(A)
2 = ∑p

i αiZ
(B)i
2

...

Z
(A)
N = ∑p

i αiZ
(B)i
N

(12)

Thus, if each component of Z(A) is actually generated by linear combinations of vec-
tors obtained by permutations of components of Z(B), then the BO molecular total
energy of Z(A) is higher than the one of Z(B) in their minimum energy configurations.
If it is not possible to solve the linear equations, then the other possibility (Eq. 11) must
be tested. If none of these sets of linear equations can be solved, then it is said that the
BO molecular total energies of Z(A) and Z(B) in their minimum energy configurations
are incomparable. In that case it may be written

min
R

E(Z(A))|| min
R

E(Z(B)) (13)

In the following we apply the dominance and separability degrees to the BO molec-
ular total energies of the complete set of isoelectronic–isoprotonic species with total
nuclear charge 10.
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3.2 Molecular total energies of isoelectronic–isoprotonic species
with total nuclear charge 10

The Hasse diagram of the set P of BO molecular total energies of 42 isoelectronic–
isoprotonic species with charge 10 was recently published by Daza and Bernal
[32,33] (Fig. 5). In this diagram, objects holding high and low energies are respec-
tively located at the top and bottom of the diagram. We partition P into 10 sub-
sets containing, each one, all the objects with same number of nuclei; these subsets
are: P1 ={Ne}, P2 ={HF, HeO, NLi, CBe, B2}, P3 ={H2O, NHeH, CLiH, CHe2,
BBeH, BLiHe, Be2He, BeLi2}, P4 ={NH3, CHeH2, BLiH2, BHe2H, Be2H2, BeL-
iHeH, BeHe3, Li3H, Li2He2}, P5 ={CH4, BHeH3, BeLiH3, BeHe2H2, Li2HeH2,
LiHe3H, He5}, P6 ={BH5, BeHeH4, Li2H4, LiHe2H3, He4H2}, P7 ={BeH6,
LiHeH5, He3H4}, P8 ={LiH7, He2H6}, P9 ={HeH8} and P10 ={H10}. Hence, P=
{Pi : i =1, 2,. . ., 10}.

This Hasse diagram, in fact a lattice, shows P10 ={H10} as the maximal subset,
it is that the hydrogen cluster has the maximum BO energy of all the isoelectronic–
isoprotonic species with total nuclear charge 10. In contrast, the minimal subset is
P1 = {Ne}, it is the Neon atom. Hence, the BO energies of all the isoelectronic-isopro-
tonic species in their minimum energy configurations with total nuclear charge 10 are
in-between the energy of Ne and H10. This result has been mathematically formalised
and generalised by Daza and Bernal [32,33] to any set of isoelectronic–isoprotonic
species in their minimum energy configurations.

From the total of 100 ordered pairs (Pi, Pj ) ∈ P×P, the dominance and separability
degrees are defined for 90 of them because of the condition of having disjoint sub-
sets (Definitions 14 and 15). Thus, for each one of the 45 sets {Pi, Pj } (non-ordered
pairs) the parameters Dom(Pi, Pj ),Dom(Pj , Pi) and Sep(Pi, Pj ) were calculated
(Table 1).

It is particularly interesting to note that Dom(Pi, Pj ) = 0 and Dom(Pj , Pi) >

Sep(Pi, Pj ) in all the cases, then any comparison of two subsets Pi and Pj , where
Pi contains objects with fewer nuclei than Pj , shows that Pi ≺ε Pj , and because
Dom(Pi, Pj ) = 0 then there are no cases where a species x having fewer nuclei than
another y has more energy than y as has been proved by Daza and Bernal [32,33].

From Table 1 it can be seen that 66.7% of the pairs {Pi, Pj } correspond to the
complete dominance of Pj over Pi , it is Dom(Pj , Pi) = 1 and Sep(Pi, Pj ) = 0.
These dominance and separability values are related by Pi ≺ε: Pj , with ε taking
all the possible values in the real interval (0.5, 1]. Additionally, these subsets do not
present incomparabilities between their members, meaning that all the species in Pj

have higher BO energies than all the species in Pi . This situation occurs for pairs
of subsets located up and down in the Hasse diagram, for instance P8 and P2. The
maximum values of separability degrees occur for adjacent pairs of subsets holding
the highest number of incomparable BO energies between their objects, the pair of
subsets with maximum separability is P5, P6(Sep(P5, P6) = 0.31). Although this is
the maximum separability degree value it cannot be stated that P5 ||δ P6 because the
condition Sep(P5, P6) > 0.5 does not hold.
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Fig. 5 Hasse diagram of the 42
isoelectronic species with total
nuclear charge 10. The boxes
represent species with same
number of nuclei
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Table 1 Dominance and separability degrees for 10 subsets of the Hasse diagram depicted in Fig. 5

{Pi, Pj }a Dom(Pi, Pj ) Dom(Pj , Pi) Sep(Pi , Pj )

{1,2},{1,3},{1,4},{1,5},{1,6},{1,7},
{1,8},{1,9},{1,10},{2,6},{2,7},{2,8},
{2,9},{2,10},{3,7},{3,8},{3,9},{3,10},
{4,8},{4,9},{4,10},{5,9},{5,10},{6,9},
{6,10},{7,9},{7,10},{8,9},{8,10},{9,10} 0 1 0

{2,5} 0 0.97 0.03
{3,6} 0 0.95 0.05
{2,4},{4,7},{5,8} 0 0.93 0.07
{6,8} 0 0.9 0.1
{3,5} 0 0.89 0.11
{4,6} 0 0.84 0.16
{2,3},{7,8} 0 0.83 0.17
{5,7} 0 0.81 0.19
{3,4} 0 0.79 0.21
{4,5},{6,7} 0 0.73 0.27
{5,6} 0 0.69 0.31
a We renamed the set Pi and Pj as i and j , respectively
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Fig. 6 (A) 0.5−, 0.6−; (B) 0.7−; (C) 0.8− (D) 0.9-dominance Hasse diagrams of the subposets remarked
in Fig. 5

Since the structure of the Hasse diagram guarantees the existence of ≤-paths of the
sort discussed in Theorem 2, it is possible to draw ε-dominance Hasse diagrams for
(P, ≺ε, C). We show in Fig. 6 four ε-dominance Hasse diagrams

Different ε-values yield different kinds of information regarding the comparabili-
ties among the considered subposets. In general low ε-values give a broad landscape
of the order relations and high ε-values permit going into the details of the relations.
For example, the diagram A (Fig. 6) shows dominance degree values greater than 0.5
and also greater than 0.6; from its linear order it can be concluded that a direct relation-
ship between the BO energies and the number of nuclei in the species holds for these
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levels of dominance degrees. Using the dominance degree values it can be found the
maximum value of ε for which the linear order of Fig. 6A holds. In this case the linear
order is kept only up to values of dominance degree equal or less than 0.7 (Fig. 6B);
this result can be interpreted as: given two subsets Pi and Pj containing, respectively,
species with i and j nuclei (i > j), then at least 70% of the pairs (x, y) ∈ Pi × Pj

holds that the energy of x is higher than the energy of y.
Additionally, the possibility of varying ε allows adjusting the level of detail we

want to explore concerning the order relations; for instance, if ε = 0.7, then P6 and
P5 become incomparable. That is, when we look for subsets where more than 70% of
the pairs (x, y) ∈ Pi × Pj holds that the energy of x is higher than the energy of y,
then P6 and P5 are not regarded because of their incomparability (not P5 ≺0.7 P6), it
means that no more than 70% of the pairs (x, y) ∈ P6 × P5 holds that the energy of
x is higher than the one of y.

If ε is shifted to ε = 0.8 then more subsets become incomparable (Fig. 6C) and
it can be seen that they start to appear around P5 and P6 (the subsets having more
incomparabilities per total relations). At this level of dominance degree the following
relations can be seen: P3 ≺0.8 P5 ≺0.8 P7, P2 ≺0.8 P4 ≺0.8 P6 ≺0.8 P8. In general a
subset Pi in {P2, P3, . . ., P8} dominates Pi−2 in {P2, P3, . . ., P8}. This mainly occurs
because the least energetic species in Pi is able to dominate more than 80% of the
species in Pi−2 but not more than 80% of the objects in Pi−1. This is the case for
BeH6, BH5, CH4 and NH3.

Fig. 6D shows the 0.9-dominance Hasse diagram, and it presents those subsets
for which more than 90% of their species present more BO energies than others in
different subsets. In general the amount of incomparabilities increase showing that
the linear order depicted in Fig. 6A is in fact caused by the low level of dominance
considered in that case (ε = 0.5, 0.6).

Now if we consider high ε-values and compare the corresponding ε-diagrams with
the ones of low ε-values, it can be seen that the dominances present in the diagram
with high ε-values are kept in the diagrams of low ε-values, for example P3 ≺ε P7 in
all the diagrams shown in Fig. 6. This relation between Hasse diagrams is known as
order preserving, in this case dominances present in high ε-dominance Hasse diagrams
are preserved in the diagrams of low ε-values. Formally, given ε > ε′, the mapping
(P,≺ε, C) → (P,≺ε′, C),≺ε′⊂≺ε is order preserving if any Pi ≺ε Pj ∈ (P, ≺ε, C)

implies Pi ≺ε′ Pj ∈ (P, ≺ε′, C).
The incomparabilities between subsets that begin to be prominent for ε grater than

0.7, occur because of the distribution of the comparabilities among the objects in the
subposet, as expected. All the relations among subsets (Fig. 5), except those between
P10, P9, P2 and P1 are characterised (1) for the surpassing of a high energetic species
of Pj over all the species of Pi , where Pj contains objects with more nuclei than those
in Pi ; and (2) for the surpassing of the lowest energetic species of Pj over the 2 lowest
energetic species of Pi . An example of (1) is the surpassing of He3H4 ∈ P7 over all
the objects in P6 and an example of (2) is the surpassing of CH4 ∈ P5 only over
CHeH2 and NH3, which belong to P4. A remark extracted from 2) is that the deletion
of the least energetic object of the subsets P8 to P3 would strengthen the dominance
relations between the subsets and this effect would be especially notorious for high
BO energy subsets. For example, the effect of removing LiH7 in P8 (a high BO energy
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subset) would cause that Dom(P8, P7) change from 0.83 to 1 and the effect of deleting
H2O in P3 (a low BO energy subset) would shifted Dom(P3, P2) just from 0.83 to
0.89. This study opens the possibility of determining the most influent species for the
dominance of their respective subsets when compared with others.

Regarding the separability degree results (Table 1), they are not a determining struc-
tural factor of the diagrams depicted in Fig. 6 because of their low values. According
to Theorem 1, these separability degree values are compensated for the high results of
dominance degree which in turn yield many ε-dominances in the ε-dominance Hasse
diagrams.

4 Conclusion and outlook

In this paper we present the mathematical background of a methodology that permits
to draw conclusions on the relations of comparabilities and incomparabilities between
pairs of disjoint subposets in (P,≤). Particularly, the dominance degree measures
the extent of comparabilities in the considered subsets while the separability degree
considers the corresponding incomparabilities. An advantage of this method over the
analysis of the poset of class-representatives after clustering the elements in P is that
the method here presented does not reduce the cardinality of the ground set P of the
original poset, therefore all the relations between all the pairs of the two compared sub-
sets are considered. It is, the dominance and separability of two subposets is assessed
by evaluating all the elements of both subposets and their possible relations.

Similar researches have been developed in observational studies where the rela-
tions between two subsets of P are measured by their coherence. We have found that
the functions used for measuring coherence are in fact functions of the dominance
and separability degrees introduced in this paper. We consider that the application of
dominance and separability degrees to observational studies would permit to give a
detailed description of the cause-effect pattern these studies look for.

One of the uses of posets in chemistry is the ranking and prioritisation of individual
objects (chemicals, regions and databases, for instance) when they have been defined
by more than one of their properties. Dominance and separability degrees allow pri-
oritising subsets of P based on the relations found in the given Hasse diagram of P .
In this case we may rank complete subsets of similar chemicals, for instance, and
explore their behaviour considering their order relations. Another chemical applica-
tion of the concept of dominance degree was recently reported in the environmental
ranking of families of refrigerants [54].

After defining and studying the mathematical properties of the dominance and sep-
arability degrees we discussed the implications that particular values ε = [0.5, 1) of
dominance and δ = [0.5, 1) of separability have over the collection of subposets of
a Hasse diagram. Hence, ≺ε and ||δ were introduced as binary relations and some
of their properties were studied. Special attention was dedicated to the lack of transi-
tivity of the dominance relation ≺ε and it was proved that when ≺ε is equipped with a
collection of ≤-paths which consider at least one element of the sequence of subposets
compared, then the new relation (≺ε, C) becomes a transitive one on the collection
of subsets where it is applied. This kind of transitivity dependent on the ≤-paths
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between the compared subposets keeps certain resemblance with the investigations on
fuzzy transitive relations developed by De Baets [55–58]. Hence the study of (≺ε, C)

as a fuzzy transitive relation and its implications must be explored in forthcoming
investigations.

From the Hasse diagram of the Born-Oppenheimer, BO, molecular total energies of
the complete set of isoelectronic–isoprotonic species with total nuclear charge 10 and
from its partitioning into 10 subsets containing, each one, all the objects with same
number of nuclei, the following conclusions can be drawn:

1. More than half of the subsets dominate completely the others and these dominanc-
es correspond to subsets of species with more nuclei over subsets with species
having fewer nuclei. This occurs because the energy of all the objects with more
nuclei is greater than the energy of objects with few nuclei in more than half of
the comparisons between subsets.

2. When looking for the maximum ε-value of dominance degree necessary to have
a linear order showing the direct relationship between number of nuclei and BO
energies it was found that it corresponds to ε = 0.7. This means that when con-
sidering all the 10 subposets, at least 70% of the pairs (x, y) ∈ Pi × Pj are cases
where the energy of x is higher than the one of y, with Pi gathering species with
more nuclei than those collected in Pj . This result sharps the general conclusion
drawn by Daza and Bernal [32,33] on the direct relationship between the number
of nuclei and the BO energies.

3. We found that, in the majority of cases, the removing of the least energetic
species of a subset Pi increases the dominance degree of Pi over other sub-
sets. This finding suggests a systematic study of the effect of removing species
on the dominance degree values. Thus, it might be analysed which objects affect
in a big extent the dominance relations among groups. Studies of this sort can
be regarded as the searching for “hubs” in the poset (P,≺ε, C) and it would be
interesting to find a connection between these dominance posetic hubs and the
hubs studied in network theory.

When the conditions are given for having a ε-dominance Hasse diagram
(Theorem 2), some of these diagrams correspond to lattices, for example those with
ε = 0.5, 0.6 and 0.7 in Fig. 6, while some other ε-values yield no lattices. It is interest-
ing to explore the relationship between ε and the lattice character of the ε-dominance
Hasse diagram.

Once calculated the dominance degrees for the subposets of a Hasse diagram,
it is possible to study particular ε-values as we did in this paper when selecting
ε = 0.5, 0.6, 0.7, 0.8 and 0.9 (Fig. 6). However, is also possible, and rather inter-
esting, to plot each ε-Hasse diagram for each dominance degree value, for example,
according to Table 1 it would be worthy to select ε = Dom(Pj , Pi), it is 0.69, 0.73,
0.79,. . . to 0.97. Thus, it is possible to check which pairs of subsets become incompa-
rable when increasing ε. Although this procedure is interesting, it may be intractable
because the dominance degree values might be disperse on the real interval (0.5, 1].
In such a case it is recommended clustering the dominance degree values in order to
group near values in different regions of the (0.5, 1] interval. Then, the analysis of the
step-by-step changes in the diagrams can be replaced by the analysis of the changes
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when selecting an ε-value from each cluster. For example, if a given clustering process
groups the values of Dom(Pj , Pi) (Table 1) into these four clusters: [0.9, 1], [0.81,
0.89], [0.73, 0.79], [0.69]; then it might be interesting to select a representative ε-value
from each cluster and to draw the corresponding ε-dominance Hasse diagrams in order
to compare them.

In spite of having found Dom(Pi, Pj ) = 0 and Dom(Pj , Pi) > Sep(Pi, Pj )

for all the subposets considered in Fig. 5, it does not mean that this is a general
result attached to the dominance and separability degrees. Those values are strictly
depended on the ≤-relations among the elements in the Hasse diagram and it is usual
to find values where Dom(Pi, Pj ) > 0 for some subposets and Dom(Pj , Pi) > 0
for some others, as well as Sep(Pi, Pj ) > 0 for others. This diversity of dominances
and separabilites makes possible to represent each ordered pair (Pi, Pj ) as a point
(Dom(Pi, Pj ),Dom(Pj , Pi), Sep(Pi, Pj )) in a Cartesian space. Following the same
idea drawn before, there may be found different clusters of similar dominated and
separated subposets for which is interesting to study the ε-dominance Hasse diagrams
among them. An example of a Hasse diagram over which is possible to apply this
procedure is the one shown in Ref. [54].

A chemical application of the measurements here developed is to the chemical
elements. Klein has suggested [35] that they may be regarded as a poset and several
results by Restrepo and coworkers [59–62] have shown that the groups of chemical
elements correspond to similarity classes. It is worthy to calculate the dominance and
separability degrees among these chemical groups in order to check the ε-dominances
and δ-separabilities among them and their possible relationship with their chemical
behaviour.

In general, the dominance and separability degrees are useful mathematical tools
for exploring the landscape of comparabilities and incomparabilities among subsets.
Making use of them it is possible to “tune” the level of detail we want to achieve in
our investigations on the order relations among subposets and this is achieved just by
varying the ε- and δ-values.

Bernal (private communication) has pointed out the resemblance of the dominance
and separability formalism with that one of blockmodel used in social network analy-
sis [63] where a graph (a poset in the current case) is given, a partition is defined and
relations between elements of the partition arising from relations between elements in
the parts of the partition are analysed. That set of relations between parts of the parti-
tion defines in turn a graph (a diagram in the present work) which is further analysed
in order to simplify the initial graph. In short, with this procedure “one can classify the
objects of the graph and, even more; one can explore the relations between classes”
(Bernal, private communication).
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